STOP! Pet cloning & Mammoth cloning

米女優が540万円で「クローン犬」作成し賛否両論「生に対する冒涜」「他人が口出しすることではない」

kuron_121
画像は若き頃のストライサンドさん。

2匹のクローン犬は、彼女のインスタグラムで動画が公開されている。
https://www.instagram.com/p/BgrpGwxhqmS/

4月24日に放送されたフジテレビの番組「めざましテレビ」では、この経緯が紹介されて・・・・・

・ストライサンドさんは、メスの「サマンサ」という名前の犬を飼っていたが、昨年14歳で亡くなった

・ストライサンドさんはサマンサの細胞を採取しており、業者に依頼してクローン犬を作ってもらった。「14年連れ添ったサマンサを失ったことがあまりにショックで悲しく、どうにかして彼女を手元におきたかった」という

・クローン犬は2005年に韓国で初めて誕生。その後技術が進歩し、アメリカのViaGen Petsという会社ではクローンペット事業を開始。犬なら5万ドル(約540万円)でクローンが作れるそうだ

参考動画

・ストライサンドさんはこの業者に依頼し、「バイオレット」と「スカーレット」という2匹のクローン犬を誕生させた

・彼女がクローン犬を作ったことについて、アメリカでは「自己中心的で情けない」「すごくがっかり」「自分もお金があったら作りたい」「彼女の人生だからほっておけばいい」といった賛否両論の声があがっている

バーブラ・ストライサンドさんは1968年に映画「Funny Girl」で主演し、アカデミー賞主演女優賞を獲得。歌手としてはグラミー賞を10回受賞。アメリカでは知らない人がいない有名人だとのこと。

※出典:にんじ報告

Space Debris and Human Spacecraft

Space debris
Space debris
Sept. 27, 2013

Space Debris and Human Spacecraft

More than 500,000 pieces of debris, or “space junk,” are tracked as they orbit the Earth. They all travel at speeds up to 17,500 mph, fast enough for a relatively small piece of orbital debris to damage a satellite or a spacecraft.

The rising population of space debris increases the potential danger to all space vehicles, but especially to the International Space Station, space shuttles and other spacecraft with humans aboard.

NASA takes the threat of collisions with space debris seriously and has a long-standing set of guidelines on how to deal with each potential collision threat. These guidelines, part of a larger body of decision-making aids known as flight rules, specify when the expected proximity of a piece of debris increases the probability of a collision enough that evasive action or other precautions to ensure the safety of the crew are needed.

Orbital Debris

Space debris encompasses both natural (meteoroid) and artificial (man-made) particles. Meteoroids are in orbit about the sun, while most artificial debris is in orbit about the Earth. Hence, the latter is more commonly referred to as orbital debris.

Orbital debris is any man-made object in orbit about the Earth which no longer serves a useful function. Such debris includes nonfunctional spacecraft, abandoned launch vehicle stages, mission-related debris and fragmentation debris.

There are more than 20,000 pieces of debris larger than a softball orbiting the Earth. They travel at speeds up to 17,500 mph, fast enough for a relatively small piece of orbital debris to damage a satellite or a spacecraft. There are 500,000 pieces of debris the size of a marble or larger. There are many millions of pieces of debris that are so small they can’t be tracked.

Even tiny paint flecks can damage a spacecraft when traveling at these velocities. In fact a number of space shuttle windows have been replaced because of damage caused by material that was analyzed and shown to be paint flecks.

“The greatest risk to space missions comes from non-trackable debris,” said Nicholas Johnson, NASA chief scientist for orbital debris.

With so much orbital debris, there have been surprisingly few disastrous collisions.

In 1996, a French satellite was hit and damaged by debris from a French rocket that had exploded a decade earlier.

On Feb. 10, 2009, a defunct Russian satellite collided with and destroyed a functioning U.S. Iridium commercial satellite. The collision added more than 2,000 pieces of trackable debris to the inventory of space junk.

China’s 2007 anti-satellite test, which used a missile to destroy an old weather satellite, added more than 3,000 pieces to the debris problem.

Tracking Debris

The Department of Defense maintains a highly accurate satellite catalog on objects in Earth orbit that are larger than a softball.

NASA and the DoD cooperate and share responsibilities for characterizing the satellite (including orbital debris) environment. DoD’s Space Surveillance Network tracks discrete objects as small as 2 inches (5 centimeters) in diameter in low Earth orbit and about 1 yard (1 meter) in geosynchronous orbit. Currently, about 15,000 officially cataloged objects are still in orbit. The total number of tracked objects exceeds 21,000. Using special ground-based sensors and inspections of returned satellite surfaces, NASA statistically determines the extent of the population for objects less than 4 inches (10 centimeters) in diameter.

Collision risks are divided into three categories depending upon size of threat. For objects 4 inches (10 centimeters) and larger, conjunction assessments and collision avoidance maneuvers are effective in countering objects which can be tracked by the Space Surveillance Network. Objects smaller than this usually are too small to track and too large to shield against. Debris shields can be effective in withstanding impacts of particles smaller than half an inch (1 centimeter).

Planning for and Reacting to Debris

NASA has a set of long-standing guidelines that are used to assess whether the threat of such a close pass is sufficient to warrant evasive action or other precautions to ensure the safety of the crew.

These guidelines essentially draw an imaginary box, known as the “pizza box” because of its flat, rectangular shape, around the space vehicle. This box is about a mile deep by 30 miles across by 30 miles long (1.5 x 50 x 50 kilometers), with the vehicle in the center. When predictions indicate that the debris will pass close enough for concern and the quality of the tracking data is deemed sufficiently accurate, Mission Control centers in Houston and Moscow work together to develop a prudent course of action.

Sometimes these encounters are known well in advance and there is time to move the station slightly, known as a “debris avoidance maneuver” to keep the debris outside of the box. Other times, the tracking data isn’t precise enough to warrant such a maneuver or the close pass isn’t identified in time to make the maneuver. In those cases, the control centers may agree that the best course of action is to move the crew into the Soyuz spacecraft that are used to transport humans to and from the station. This allows enough time to isolate those spaceships from the station by closing hatches in the event of a damaging collision. The crew would be able to leave the station if the collision caused a loss of pressure in the life-supporting module or damaged critical components. The Soyuz act as lifeboats for crew members in the event of an emergency.

Mission Control also has the option of taking additional precautions, such as closing hatches between some of the station’s modules, if the likelihood of a collision is great enough.

Maneuvering Spacecraft to Avoid Orbital Debris

NASA has a set of long-standing guidelines that are used to assess whether the threat of a close approach of orbital debris to a spacecraft is sufficient to warrant evasive action or precautions to ensure the safety of the crew.

Debris avoidance maneuvers are planned when the probability of collision from a conjunction reaches limits set in the space shuttle and space station flight rules. If the probability of collision is greater than 1 in 100,000, a maneuver will be conducted if it will not result in significant impact to mission objectives. If it is greater than 1 in 10,000, a maneuver will be conducted unless it will result in additional risk to the crew.

Debris avoidance maneuvers are usually small and occur from one to several hours before the time of the conjunction. Debris avoidance maneuvers with the shuttle can be planned and executed in a matter of hours. Such maneuvers with the space station require about 30 hours to plan and execute mainly due to the need to use the station’s Russian thrusters, or the propulsion systems on one of the docked Russian or European spacecraft.

Several collision avoidance maneuvers with the shuttle and the station have been conducted during the past 10 years.

NASA implemented the conjunction assessment and collision avoidance process for human spaceflight beginning with shuttle mission STS-26 in 1988. Before launch of the first element of the International Space Station in 1998, NASA and DoD jointly developed and implemented a more sophisticated and higher fidelity conjunction assessment process for human spaceflight missions.

In 2005, NASA implemented a similar process for selected robotic assets such as the Earth Observation System satellites in low Earth orbit and Tracking and Data Relay Satellite System in geosynchronous orbit.

In 2007, NASA extended the conjunction assessment process to all NASA maneuverable satellites within low Earth orbit and within 124 miles (200 kilometers) of geosynchronous orbit.

DoD’s Joint Space Operations Center (JSpOC) is responsible for performing conjunction assessments for all designated NASA space assets in accordance with an established schedule (every eight hours for human spaceflight vehicles and daily Monday through Friday for robotic vehicles). JSpOC notifies NASA (Johnson Space Center for human spaceflight and Goddard Space Flight Center for robotic missions) of conjunctions which meet established criteria.

JSpOC tasks the Space Surveillance Network to collect additional tracking data on a threat object to improve conjunction assessment accuracy. NASA computes the probability of collision, based upon miss distance and uncertainty provided by JSpOC.

Based upon specific flight rules and detailed risk analysis, NASA decides if a collision avoidance maneuver is necessary.

If a maneuver is required, NASA provides planned post-maneuver orbital data to JSpOC for screening of near-term conjunctions. This process can be repeated if the planned new orbit puts the NASA vehicle at risk of future collision with the same or another space object.

Last Updated: Aug. 7, 2017
Editor: Mark Garcia

米国では、毎年10億本以上のプラスチック製の歯ブラシが捨てられています

Over 1 billion plastic toothbrushes

Over 1 billion plastic toothbrushes are thrown away every year in the United States — that’s 50 million pounds of waste added to landfills annually. Over 99% of toothbrushes that the world uses are plastic! Also, more than 5 trillion pieces of plastic are floating in the ocean. That’s a combined mass of over 250,000 tons. And this number is only getting bigger.
©Zero Waste Globe. instagram

米国では、毎年10億本以上のプラスチック製の歯ブラシが捨てられています。これは、年間5000万ポンドのゴミが埋め立て地に追加されていることを意味します。 世界中で使用されている歯ブラシの99%以上がプラスチックです。 また、5兆個以上のプラスチックが海に浮かんでいます。 それは25万トンを超える総質量です。 そして、この数は増え続けています。
出典:Zero Waste Globe. 翻訳:Google翻訳

Over 1 billion plastic toothbrushes

狩猟における鉛弾(ライフル弾、散弾)の使用禁止をいますぐ。

Lead poisoning

 

参考リンク

中毒するオジロワシの映像
https://vimeo.com/112560933

一般財団法人クリステル・ヴィ・アンサンブル
www.christelfoundation.org/

一般財団法人クリステル・ヴィ・アンサンブル(フェイスブックページ)
https://www.facebook.com/christelfoundation/timeline

洗剤の使い方

以前、修理屋を営んでいた頃。
洗濯機の修理依頼が有りました。

伺ってみると、洗濯機の水が排水しない、との事。
洗濯機をひっくり返してみると、排水弁に粉洗剤が充満している。
「どの位、洗剤を入れていますか?」と伺ったら。
「汚れが落ちないので、段々と増やして、今は粉洗剤を一回に2箱入れています」との事。

洗剤は、説明書通りの量を入れる事と、洗濯機内の洗濯物がちゃんと対流する量の洗濯物(洗濯機容量の7割程度)を入れる必要があります。

風力発電が野鳥に与える影響のまとめ

風力発電が野鳥に与える影響のまとめ
(財)日本野鳥の会自然保護室 浦 達也

shiryo100927_08

宗谷岬の発電用風車群 

ここ数年風力発電用の風車が急増し、鳥類が衝突する事故が発生しています。2017年11月現在、北海道では46羽のオジロワシと1羽のオオワシが風車のブレードと衝突(バードストライク)して死亡したことが確認されています。風力発電の盛んな海外でも多くの鳥類が衝突し、死亡している事が問題となっています。

2021年から、ハワイ等では日焼け止め禁止に

米ハワイ州のイゲ知事は、サンゴ礁への有害性が指摘される物質を含んだ日焼け止めの販売や流通を禁じる法案に署名しました。

これは世界初の試み。ハワイでは2021年1月1日に発効するそうです。販売禁止となるのは、紫外線吸収剤の「オキシベンゾン」と「オクチノキサート」が含まれる日焼け止め。観光客が持ち込んだ日焼け止めは規制できないが、同州はサンゴ礁への有害性を伝えていきたいとしています。
でもそもそも日本で売られている日焼け止めの成分に、オキシベンゾン』と『オクチノキサート』が使われているのか?
調べてみたところ、日本で『オクチノキサート』は『メトキシケイヒ酸エチルヘキシル』という別名で呼ばれている成分だったんです!!
『メトキシケイヒ酸エチルヘキシル』は、最も有名でかつ最も使用頻度の高い紫外線吸収剤なんです。
しかも日本で市販されている日焼け止めには、この『メトキシケイヒ酸エチルヘキシル』が主成分に配合されているものだらけ(涙)

オキシベンゾンとオクティノセイト(BIHI – ハワイろぐ)

日焼け防止のために配合される成分には、紫外線吸収剤と紫外線散乱(反射)剤がある。オキシベンゾンとオクティノセイトはどちらも紫外線吸収剤。紫外線吸収剤自体が、紫外線を吸収する際に皮膚上で化学変化を起こし、別の物質に変わる(または副産物が発生する)ことから肌への負担が大きいと言われ、日本でも紫外線吸収剤を含まない商品はいくつも販売されている。紫外線反射剤の代表的なものは酸化亜鉛と酸化チタン。

 日本では環境保護の観点よりも人体への影響を考慮し、オキシベンゾンを含む製品は少なくなっているが、日焼け止めに限らず、化粧品やシャンプーなど用途は広い。禁止されていないが、経口摂取の際の毒性や、アレルギーの誘引、発がん性などが懸念され、表示指定成分となっている。

 オクティノセイトは日本の製品には「メトキシケイヒ酸オクチル」または「メトキシケイヒ酸エチルヘキシル」と表示されており、日焼け止めに含まれる一般的な成分。日本の大手メーカーのファンデーションなどにも多く使われている。

出展:沖縄REPEAT 2018.07.23、BIHI
参考:https://www.drifter.okinawa.jp/sunscreen/?pathinfo=sunscreen